home persontext

patent was likewise held by a Federal judge to be lacking

person 2023-12-02 20:39:16451211177

There is, of course, a profound physical difference between a planet and a star, for the star is a luminous sun, and the planet is merely a dark body, rendered visible by the sunlight which falls upon it. Notwithstanding that a star is a sun thousands of times larger than the planet and millions of times more remote, yet it is a singular fact that telescopic planets possess an illusory resemblance to the stars among which their course happens to lie. So far as actual appearance goes, there is indeed only one criterion by which a planet of this kind can be discriminated from a star. If the planet be large enough the telescope will show that it possesses a disc, and has a visible and measurable circular outline. This feature a star does not exhibit. The stars are indeed so remote that no matter how large they may be intrinsically, they only exhibit radiant points of light, which the utmost powers of the telescope fail to magnify into objects with an appreciable diameter. The older and well-known planets, such as Jupiter and Mars, possess discs, which, though not visible to the unaided eye, were clearly enough discernible with the slightest telescopic power. But a very remote planet like Uranus, though it possessed a disc large enough to be quickly appreciated by the consummate observing skill of Herschel, was nevertheless so stellar in its appearance, that it had been observed no fewer than seventeen times by experienced astronomers prior to Herschel. In each case the planetary nature of the object had been overlooked, and it had been taken for granted that it was a star. It presented no difference which was sufficient to arrest attention.

patent was likewise held by a Federal judge to be lacking

As the unknown body by which Uranus was disturbed was certainly much more remote than Uranus, it seemed to be certain that though it might show a disc perceptible to very close inspection, yet that the disc must be so minute as not to be detected except with extreme care. In other words, it seemed probable that the body which was to be sought for could not readily be discriminated from a small star, to which class of object it bore a superficial resemblance, though, as a matter of fact, there was the profoundest difference between the two bodies.

patent was likewise held by a Federal judge to be lacking

There are on the heavens many hundreds of thousands of stars, and the problem of identifying the planet, if indeed it should lie among these stars, seemed a very complex matter. Of course it is the abundant presence of the stars which causes the difficulty. If the stars could have been got rid of, a sweep over the heavens would at once disclose all the planets which are bright enough to be visible with the telescopic power employed. It is the fortuitous resemblance of the planet to the stars which enables it to escape detection. To discriminate the planet among stars everywhere in the sky would be almost impossible. If, however, some method could be devised for localizing that precise region in which the planet's existence might be presumed, then the search could be undertaken with some prospect of success.

patent was likewise held by a Federal judge to be lacking

To a certain extent the problem of localizing the region on the sky in which the planet might be expected admitted of an immediate limitation. It is known that all the planets, or perhaps I ought rather to say, all the great planets, confine their movements to a certain zone around the heavens. This zone extends some way on either side of that line called the ecliptic in which the earth pursues its journey around the sun. It was therefore to be inferred that the new planet need not be sought for outside this zone. It is obvious that this consideration at once reduces the area to be scrutinized to a small fraction of the entire heavens. But even within the zone thus defined there are many thousands of stars. It would seem a hopeless task to detect the new planet unless some further limitation to its position could be assigned.

It was accordingly suggested to Le Verrier that he should endeavour to discover in what particular part of the strip of the celestial sphere which we have indicated the search for the unknown planet should be instituted. The materials available to the mathematician for the solution of this problem were to be derived solely from the discrepancies between the calculated places in which Uranus should be found, taking into account the known causes of disturbance, and the actual places in which observation had shown the planet to exist. Here was indeed an unprecedented problem, and one of extraordinary difficulty. Le Verrier, however, faced it, and, to the astonishment of the world, succeeded in carrying it through to a brilliant solution. We cannot here attempt to enter into any account of the mathematical investigations that were necessary. All that we can do is to give a general indication of the method which had to be adopted.

Let us suppose that a planet is revolving outside Uranus, at a distance which is suggested by the several distances at which the other planets are dispersed around the sun. Let us assume that this outer planet has started on its course, in a prescribed path, and that it has a certain mass. It will, of course, disturb the motion of Uranus, and in consequence of that disturbance Uranus will follow a path the nature of which can be determined by calculation. It will, however, generally be found that the path so ascertained does not tally with the actual path which observations have indicated for Uranus. This demonstrates that the assumed circumstances of the unknown planet must be in some respects erroneous, and the astronomer commences afresh with an amended orbit. At last after many trials, Le Verrier ascertained that, by assuming a certain size, shape, and position for the unknown Planet's orbit, and a certain value for the mass of the hypothetical body, it would be possible to account for the observed disturbances of Uranus. Gradually it became clear to the perception of this consummate mathematician, not only that the difficulties in the movements of Uranus could be thus explained, but that no other explanation need be sought for. It accordingly appeared that a planet possessing the mass which he had assigned, and moving in the orbit which his calculations had indicated, must indeed exist, though no eye had ever beheld any such body. Here was, indeed, an astonishing result. The mathematician sitting at his desk, by studying the observations which had been supplied to him of one planet, is able to discover the existence of another planet, and even to assign the very position which it must occupy, ere ever the telescope is invoked for its discovery.

Thus it was that the calculations of Le Verrier narrowed greatly the area to be scrutinised in the telescopic search which was presently to be instituted. It was already known, as we have just pointed out, that the planet must lie somewhere on the ecliptic. The French mathematician had now further indicated the spot on the ecliptic at which, according to his calculations, the planet must actually be found. And now for an episode in this history which will be celebrated so long as science shall endure. It is nothing less than the telescopic confirmation of the existence of this new planet, which had previously been indicated only by mathematical calculation. Le Verrier had not himself the instruments necessary for studying the heavens, nor did he possess the skill of the practical astronomer. He, therefore, wrote to Dr. Galle, of the Observatory at Berlin, requesting him to undertake a telescopic search for the new planet in the vicinity which the mathematical calculation had indicated for the whereabouts of the planet at that particular time. Le Verrier added that he thought the planet ought to admit of being recognised by the possession of a disc sufficiently definite to mark the distinction between it and the surrounding stars.

It was the 23rd September, 1846, when the request from Le Verrier reached the Berlin Observatory, and the night was clear, so that the memorable search was made on the same evening. The investigation was facilitated by the circumstance that a diligent observer had recently compiled elaborate star maps for certain tracts of the heavens lying in a sufficiently wide zone on both sides of the equator. These maps were as yet only partially complete, but it happened that Hora. XXI., which included the very spot which Le Verrier's results referred to, had been just issued. Dr. Galle had thus before his, eyes a chart of all the stars which were visible in that part of the heavens at the time when the map was made. The advantage of such an assistance to the search could hardly be over-estimated. It at once gave the astronomer another method of recognising the planet besides that afforded by its possible possession of a disc. For as the planet was a moving body, it would not have been in the same place relatively to the stars at the time when the map was constructed, as it occupied some years later when the search was being made. If the body should be situated in the spot which Le Verrier's calculations indicated in the autumn of 1846, then it might be regarded as certain that it would not be found in that same place on a map drawn some years previously.

Copyright Notice

he website materials are all from the internet. If there are any infringement issues, please contact us and delete them immediately after verification!